US009262184B2

a2 United States Patent

Tajima et al.

US 9,262,184 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) VIRTUAL COMPUTER SYSTEM AND I/O
IMPLEMENTING METHOD IN VIRTUAL
COMPUTER

(71)
(72)

Applicant: Hitachi, Ltd., Tokyo (JP)

Inventors: Sachie Tajima, Tokyo (JP); Hitoshi
Ueno, Tokyo (JP)

(73)
")

Assignee: HITACHIL, LTD., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 119 days.

@
(22)

Appl. No.: 14/254,581

Filed: Apr. 16, 2014

(65) Prior Publication Data

US 2014/0317619 Al Oct. 23, 2014

(30) Foreign Application Priority Data

................................. 2013-087040

Apr. 18,2013 (IP)
(51) Int.CL
GOGF 9/455
GOGF 3/00

(2006.01)
(2006.01)

START OF DRIVER
GENERATING
MECHANISM [

406 OF 151 05

(52) US.CL

CPC e GO6F 9/455 (2013.01)
(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0007112 Al 1/2009 Moriki et al.

FOREIGN PATENT DOCUMENTS

JP 2009-003749 A 1/2009

Primary Examiner — Adam Lee
(74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.

(57) ABSTRACT

An OS on a virtual computer at the (n+m)-th stage (n and m
represent natural numbers) is caused to recognize a device
driver that runs on an OS on the n-th stage virtual computer.
Specifically, a shared region is generated in a memory, and the
OS at the second stage is caused to recognize, in a pass-
through manner, the device driver that runs on the OS at the
second stage.

4 Claims, 22 Drawing Sheets

STORE INFORMATION ON DEVICE CONNECTED
TO 15108 IN CONNEGTED DEVICE TABLE

! 1102
SCANNING
COMPLETED S CONNECTED SCANNING UNCOMPLETED
- DEVICE TABLE SCANNED?
1107 1103
¢ ¢
STORE INFORMATION OF RESFRVED | | LOAD DRIVER |
NOTIFICATION REGION AND SHARED
NEMORY IN 1t OS ADDRESS TABLE 1104
¢
1106 STORF CONTROLLER INFORMATION
b IN'IDENTIFIER OF DEVICE
GENERATE SHARED REGION AND
ACQUIRE ADDRESS OF SHARED REGION 1 1205
GENERATE NOTIFICATION
REGION AND ACQUIRE ADDRESS OF
NOTIFICATION REGION

1108
Z

¢

NOTIFY VIRTUALIZATION MECHANISM A OF
INFORMATION ON 1st OS ADDRESS TABLE

END

U.S. Patent Feb. 16, 2016 Sheet 1 of 22 US 9,262,184 B2

1 1. PHYSICAL COMPUTER
> " NG
CPU MEMORY
Y 2nd 0S
/ VIRTUALIZATION
123/ M MECHANISM B
122/\/ 1st OS
N VIRTUALIZATION
121 MECHANISM A
1137 1/0

CONTROLLER

102
DEVICE

U.S. Patent

al

b0

Feb. 16, 2016 Sheet 2 of 22 US 9,262,184 B2
201
e 202
203
at a3 ar
SHARED REGION SHARED REGION SHARED REGION SHARED REGION
1 b3 b2
NOTIFICATION REGION NOTIFICATION REGION NOTIFICATION REGION NOTIFICATION REGION
¢l [C2
EVENT NOTIFICATION EVENT NOTIFICATION EVENT NOTIFICATION
REGION REGION REGION
MEMORY OF 2nd 0S
MEMORY OF
VIRTUALIZATION
MECHANISM B
MEMORY OF 1t 0S

PHYSICAL MEMORY

U.S. Patent

Feb. 16, 2016

Sheet 3 of 22

US 9,262,184 B2

121 |
112
y !
(VIRTURLIZATION MECHANIS &
311 VENORY 301
) ¢
\
321 SHARED REGION A 329
2 2
DATA STORAGE REGION A DATATABLEA
USEINFORMATIONA | J COMPLETION INFCRYATION A
e <
319 3B y3 M gy
2 ¢ ¢
NOTFICATIONREGIONA £ | L/0 COMPLETER A /OBECUTORA
315 316
> b
CONTROLLER NFORMETIONA | | IEXECUTION INFORMATION A
DRVERA
302
4 OUEST 0 GENERATIG MECHANIM A |»305
DEVICE ALLOCATION TABLE & :
QUESTOSSTARTERA J~-331
303
2
ADDRESS CONVERSION MECHANISM A IDENTIFER CONVERSION WECHANGHA 304
| ADDRESS COMVERSION INFORMATION & IDENTIFER CONVERSION INFORMATION A A~ 351
}
\
o 361 DRVER GEVERATAGIECHANGHA hr306
e SELFORNERGRNERATORA i~ 341
DRVER GROUPA

U.S. Patent Feb. 16, 2016 Sheet 4 of 22 US 9,262,184 B2

122
2
201 15t08
MEMORY
401 411 419 3
))) “
{ ((
SHARED NOTIICATION | | CONTROLLER | | NOTIFICATION
REGION T REGION T INFORMATIONT | | REGION SIZE T
44 45 M6 418
2 2 2 2
INTERRUPTION | | INTERRUPTION DRIVER SHARED
RECEVERI SSUERI__| | GENERATORI | | REGIONSIZEI
DRVER
402 403
b 2
15t0S ADDRESS TABLE | CONNECTED DEVICE TABLE
404 123
2 -
DEVICE ALLOCATION TABLET | |VIRTUALIZATION MECHANISH B
405 421 422
N 3
{ GUEST 05 GENERATING MECHANISMT ~ {
GUEST DRIVER ALLOCATOR GUEST 08 STARTER
406 431 432 433
&) Y3

(DRWERGENERATING MECHANSMT {
SELF DRIVER GENERATORT |~ |GUEST DRIVER GENERATOR1{ | NOTIFER

EVENT NOTIFICATION REGION 1 f~—-407

U.S. Patent Feb. 16, 2016 Sheet 5 of 22 US 9,262,184 B2

FIG. 5

123

VIRTUALIZATION MECHANISM B

MEMORY

202 M [ADDRESS CONVERSION b 501
MECHANISM B

ADDRESS CONVERSION p~t_- 511
INFORMATION B

U.S. Patent Feb. 16, 2016 Sheet 6 of 22 US 9,262,184 B2

124
5 203
(408
611 601 MEMORY
2 D,
SHARED REGIONTI
621~ DATASTORAGE REGIONII ' DATATABLE T L~ 622
6234~ USEINFORVATION I COMPLETION INFORMATION T f~}~ 624
612 613 614
2) 2
NOTIFICATION REGION T ADDRESS TABLE II QUECET
TEMPORARY STORAGE REGIONTI | | INTERRUPTION RECEIVER 1 1/0 EXECUTOR I
4 4 ¢
615 616 617
DRIVER I
602 603
DRIVER GENERATING MECHANISM T APPLICATION T

DRIVER GENERATORI 631 64

EVENT NOTIFICATION REGION T

U.S. Patent Feb. 16, 2016 Sheet 7 of 22 US 9,262,184 B2

e
711 712 721 3 732
¢ ¢ 2 2 H
NAME | IDENTIFIER IDENTIFIER INDEX ADDRESS
1st0S1 | 00:116.0 p~710{ 00:16.0 }~720 3 128 ~730
1st0S2 | 01:1ac CONTROLLER 9 64

INFORMATION A 315
DEVICE ALLOGATION TABLE A 302 IN-EXECUTION INFORMATION A 316

741 742 743
2 : 2
NDEX | ADDRESS | SIZE
< 1 1024 4 peT40
2 3072 256
3 16 64
DATA TABLE A 322
751 761
2 b4
INDEX INDEX
4 8
USE INFORMATION A 323 COMPLETION INFORMATION A 324
771 772 773
2 2 2
VIRTUALIZATION] 1st OS NAME | 1505
MECHANISM A

00:16.0 1st0S1 | 02:00.1 770

01:1f.2° 15t OS 1 01:1ac
IDENTIFIER CONVERSION INFORMATION A 351

781 782 783
2 P ¢
VIRTUALIZATION |1stOS NAME] 1st OS
MECHANISM ADDRESS ADDRESS |~.780
aabc 1st OS 1 0512
cdef 1st OS 1 0016

N ADDRESS CONVERSION INFORMATION A 361

U.S. Patent

FIG. 8<

Feb. 16, 2016 Sheet 8 of 22 US 9,262,184 B2
811 812 813 814 815
< NOTIF2|CATION £ SHA?{ED :
e | RGO (SRR | RGN | el
02:001 | 128 64 512 1024 ~810
00:1£2 | 4096 128 7168 512
1st OS ADDRESS TABLE I 402
821 822
< P
IDENTIFIER NAME
02:00.1 | Ethemet Controller 820
01:1a.c SATA Controller
CONNECTED DEVICE TABLE I 403
831 832
¢ 2
NAME | IDENTIFIER
GUEST1 | 02:00.1 ~830
GUEST2 | 00:1f.2

DEVICE ALLOCATION TABLE 1404

841
¢

IDENTIFIER

02:00.1

~ 840

CONTROLLER INFORMATION I 413

U.S. Patent

FIG. 9<

Feb. 16, 2016 Sheet 9 of 22 US 9,262,184 B2
911 912 913 914 915
¢ b b P4 ¢
NOTIFICATION SHARED
NOTIFICATION SHARED
IDENTIFIER | REGION REGION
ROON T REGIONSIZE | SO, | REGIONSIZE
02:00.1 8 64 256 104 [~910
ADDRESS TABLE 11 613
921 922
2 2
ADDRESS SIZE
16 16 L~ 920
248 8
QUEUE 1l 614
931 932 933
2 4 ¢
INDEX ADDRESS SizE
1 1024 5 90
9 3072 256
DATA TABLE 11 622
941 951
e 2
INDEX INDEX
1 940 3 950
3 8
USE INFORMATION TI 623 COMPLETION

INFORMATION II 624

U.S. Patent Feb. 16, 2016 Sheet 10 of 22

FIG. 10

START OF GUEST
0S STARTER A 331
IN VIRTUALIZATION

MECHANISM A

1001
¢ N4

REFER TO DEVICE ALLOCATION INFORMATION

1002
{ v
ACQUIRE DEVICE IDENTIFIER

1003
l v

ALLOCATE DEVICE AND CONTINUE STARTING 1st OS

END

US 9,262,184 B2

U.S. Patent Feb. 16, 2016 Sheet 11 of 22 US 9,262,184 B2
START OF DRIVER
GENERATING
MECHANISM I
406 OF 1st 03
1101
r ?
STORE INFORMATION ON DEVICE CONNECTED
TO 15t OS IN CONNECTED DEVICE TABLE
1102
SCANNING
COMPLETED IS CONNECTED SCANNING UNCOMPLETED
DEVICE TABLE SCANNED?
1107 1103
\ ?
STORE INFORMATION OF RESERVED LOAD DRIVER
NOTIFICATION REGION AND SHARED
MEMORY IN 1st OS ADDRESS TABLE 1104
t \ ¢
1106 STORE CONTROLLER INFORMATION
} IN IDENTIFIER OF DEVICE
GENERATE SHARED REGION AND
ACQUIRE ADDRESS OF SHARED REGION 11805
N WV
GENERATE NOTIFICATION
REGION AND ACQUIRE ADDRESS OF
NOTIFICATION REGION
|
1108
{

NOTIFY VIRTUALIZATION MECHANISM A OF
INFORMATION ON 1st OS ADDRESS TABLE

END

U.S. Patent Feb. 16, 2016 Sheet 12 of 22 US 9,262,184 B2

START OF SELF
DRIVER GENERATOR A
341 IN VIRTUALIZATION
MECHANISM A
1201
¢

RECEIVE INFORMATION ON 1st OS ADDRESS TABLE

1202

1508 ADDRESS
TABLE SCANNED? _

SCANNING
~_ COMPLETED ,

1203 SCANNING
) UNCOMPLETED

CONVERT IDENTIFIER BY-IDENTIFIER CONVERSION
MECHANISM TO VALUE RECOGNIZABLE
BY VIRTUALIZATION MECHANISM A

1204
{

\ 4
LOAD DRIVER

1205
? h. 4

STORE IDENTIFIER OF DEVICE
IN CONTROLLER INFORMATION

1206
{

h 4

CONVERT NOTIFICATION REGION ADDRESS
AND SHARED REGION ADDRESS BY
ADDRESS CONVERSION MECHANISM

1207
i

N

DESIGNATE NOTIFICATION REGION
BY USING NOTIFICATION REGION
SIZE AND CONVERTED ADDRESS

1208 l
)
DESIGNATE SHARED REGION BY USING SHARED
REGION SIZE AND CONVERTED ADDRESS

U.S. Patent Feb. 16, 2016 Sheet 13 of 22

FIG. 13

START OF
GUEST 0§
GENERATING
MECHANISM I
405 OF 1st OS

13201 l

STORE 2nd OS NAME AND IDENTIFIER OF DEVICE
TO BE ALLOCATED IN DEVICE ALLOCATION TABLE

\ 4

1302
{

CONTINUE STARTING 2nd OS BY USING,
AS ARGUMENT, DEVICE STORED IN STEP 1301

US 9,262,184 B2

U.S. Patent

Feb. 16, 2016 Sheet 14 of 22

FIG. 14

START OF DRIVER
GENERATING

MECHANISM II
602 OF 2nd OS

1401
2 A 4

AT START, ACCESS EVENT
NOTIFICATION REGION BY 2nd OS

1402
¢

Y

AWAIT BEING INTERRUPTED BY 1st OS

END

US 9,262,184 B2

U.S. Patent Feb. 16, 2016 Sheet 15 of 22 US 9,262,184 B2

FIG. 15

START OF DRIVER
GENERATING
MECHANISM I
406 OF 1st OS

1501
v {

RECEIVE ACCESS FROM 2nd OS BY 1st 0S

1502

SCANNING | -
5t S ADDRESS

COMPLETED .

TABLE SCANNED?

SCANNING
UNCOMPLETED

1503
.. NOT IDENTICAL |

— IDENTIFIER

IDENTICAL 1 304

BY ADDRESS CONVERSION MECHANISM,
CONVERT ADDRESS TO ADDRESS
RECOGNIZABLE BY 2nd OS

1506
¢

A

NOTIFY 2nd OS OF SIZE

AND CONVERTED ADDRESS

U.S. Patent

Feb. 16, 2016 Sheet 16 of 22

FIG. 16

START OF DRIVER
GENERATING
MECHANISM

602 OF 2nd OS

1(301 l

LOAD DRIVER

1602 l
{

STORE INFORMATION ON NOTIFICATION REGION
AND SHARED REGION IN ADDRESS TABLE

US 9,262,184 B2

U.S. Patent Feb. 16, 2016 Sheet 17 of 22 US 9,262,184 B2

START OF
DRIVER 601
IN2nd 0S
E}N\D 1701
1710) ¢
{ RECEIVE 1/0 REQUEST
AWATT INTERRUPTION —
x 1709 ¢
¢ ACQUIRE SHARED REGION ADDRESS
WRITE IN NOTIFICATION REGION BY REFERRING TO ADDRESS TABLE
F
1708
' L ey
ACQUIRE NOTIFICATION REGION ADDRESS | COMPLETEL
BY REFERRING T0 ADDRESS TABLE ~J/OREQUESTS?
1711 Uﬁggﬁgﬁ% [
L 1704
{ FREE REGION
STORE ADDRESS OF STORAGE REGION | NOTINCLUDED .

ANDI/0 REQUEST SIZE IN QUEUE

FREE REGION
INCLUDED |

STORE 1/0 REQUEST IN
DATA STORAGE REGION

1705
2

1706
v {

STORE INDEX, ADDRESS,
AND SIZE IN DATATABLE

1707
e

W

STORE INDEX OF ADDRESS TABLE |
IN'USE INFORMATION

U.S. Patent Feb. 16, 2016 Sheet 18 of 22 US 9,262,184 B2

FIG. 18

STARTOF 1/0
EXECUTOR 314 IN

VIRTUALIZATION
MECHANISM A

1801

RECEIVEWRITING TO NOTIFICATION REGION

1802

~=TI5E INFORMATION
——_SCANNED?

SCANNING
UNCOMPLETED

SCANNING
\COMPLETED _

1803
2

ACQUIRE INDEX IN DATA TABLE
1804

v

ACQUIRE 170 REQUEST FROM
DATA STORAGE REGION

1805
¢

Y
EXECUTE 1/0 FOR DEVICE

1806
4

¥

STORE INFORMATION IN
IN-EXECUTION INFORMATION

1807
2

Y

AWAIT RESPONSE FROM DEVICE

U.S. Patent

Feb. 16, 2016 Sheet 19 of 22

FIG. 19

START OF 1/0
COMPLETER 313 IN
VIRTUALIZATION
MECHANISM A

1901
¢

A\

RECEIVE RESULT OF 170 FROM DEVICE

1902
¢

N

ACQUIRE ROW IN DATA TABLE BY
REFERRING TO IN-EXECUTION INFORMATION

1903

¥ {
DELETE ROW IN IN-EXECUTION INFORMATION
1904

v ¢

STORE RESULT OF I/Q REGEIVED
FROM DEVICE IN DATA STORAGE REGION

1905
i

\

DELETE ROW FROM USE INFORMATION

1906
2

y

STORE INDEX IN
COMPLETION INFORMATION

1907
v {

ISSUE 1/0 COMPLETION
INTERRUPTION TO 1st OS

END

US 9,262,184 B2

U.S. Patent Feb. 16, 2016 Sheet 20 of 22

FIG. 20
START OF
DRIVER I
401 IN 1st OS
2001
v 2

RECEIVE 170 COMPLETION INTERRUPTION

\ 4

2002
¢

ISSUE 170 COMPLETION INTERRUPTION TO 2nd OS

END

US 9,262,184 B2

U.S. Patent

Feb. 16, 2016

FIG. 21

START OF
INTERRUPTION
RECEVER T
616 OF 2nd OS

4

Sheet 21 of 22

US 9,262,184 B2

2101
¢

RECEIVE 1/0 COMPLETION INTERRUPTION

SCANNING P
COMPLETED """ COMPLETION "~
r “~—LNFORMATION SCANNED?

SCANNING T

UNCOMPLETED .

2102

2103
¢

ACQUIRE INDEX FROM

COMPLETION INFORMATION

Y

2104
¢

ACQUIRE ADDRESS AND SIZE OF
STORAGE REGION FROM DATA TABLE

b 4

2105
{

ACQUIRE COMPLETED 1/0 REQUEST
FROM DATA STORAGE REGION

2106
¢

A4

NOTIFY APPLICATION

NOT STORED

STORED

ZCONFIRM QUEUE?>

2107

2108
4

EXECUTE 1/0

U.S. Patent Feb. 16, 2016 Sheet 22 of 22 US 9,262,184 B2

FIG. 22

2201 2202 2203
Pe P b

1st OS GUEST GUEST
ADDRESS NAME | ADDRESS |, 2290

0512 GUEST 1 0256
2345 GUEST 2 0001
ADDRESS CONVERSION INFORMATION B 511

US 9,262,184 B2

1
VIRTUAL COMPUTER SYSTEM AND /O
IMPLEMENTING METHOD IN VIRTUAL
COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the priority of Japanese Patent
Application No. 2013-087040, filed on Apr. 18, 2013, which
is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to input/output (I/O) that is
implemented by an uppermost computer environment in
environments having virtualization mechanisms overlaid at
plural stages.

2. Description of the Related Art

One example of the related art in the field of the present
invention is disclosed in JP-2009-003749-A. This publication
discloses that “by selecting either one of a guest status area
221 for executing a user program on a second virtual proces-
sor in accordance with a factor of calling a host virtual
machine manager (VMM) and a host status area 222 for
executing a guest VMM, and updating a guest status area 131
for controlling a physical processor in a shadow virtual
machine control block (VMCB), a next generation operating
system (OS) having a virtualization function is executed as
the user program on a first virtual processor”.

JP-2009-003749-A describes a means that causes an OS
having a virtualization mechanism to operate, on a virtual
computer formed with a virtualization technology, on a physi-
cal computer, or so-called “multistage virtualization technol-
ogy”. By using multistage virtualization technology, an envi-
ronment that includes virtual computers at plural stages can
be constructed.

The multistage virtual computer environment has an
advantage in that a flexible system configuration can be set
up. Conversely, the multistage virtual computer environment
has a problem in that deterioration in performance is likely to
occur because in order for a virtual computer at an uppermost
stage to access a virtual computer at a lowermost stage, the
accessing needs to be established via a virtual computer and
virtualization mechanism at an intermediate stage.

For example, it is assumed that in a two-staged virtual
computer environment, an I/O request is issued from an OS
on a virtual computer at the second stage to a physical device.
The I/O request executed on the virtual computer at the sec-
ond stage is received by an OS on a virtual computer at the
first stage. The OS on the virtual computer at the first stage
executes the received 1/O request. This I/O request is received
by a virtualization mechanism on a physical computer. The
virtualization mechanism issues an I/O request to the physical
device.

This example indicates that “the /O request executed on
the virtual computer at the second stage is executed via two
layers of the virtualization mechanism on the physical com-
puter”. This indicates that performance of the /O request
executed by the OS on the virtual computer at the second
stage deteriorates than performance of the /O request
executed by the OS on the physical computer and the virtual
computer at the first stage.

SUMMARY OF THE INVENTION

To this end, according to an aspect of the present invention,
there is provided a virtual computer system including: a

10

15

20

25

30

35

40

45

50

55

60

65

2

physical computer including a central processing unit (CPU)
and a physical memory; a first virtualization mechanism that
operates on the physical computer to provide a first virtual
computer; a second virtualization mechanism that, operates
on the first virtual computer to provide a second virtual com-
puter; and a device connected to the physical computer.

A self driver generator in a driver generating mechanism I
included in the first virtual computer loads a driver I allocated
to the first virtual computer into a first virtual memory allo-
cated to the first virtual computer. The driver generating
mechanism I may store, as controller information, an identi-
fier of the device which is allocated to the first virtual com-
puter. The driver generating mechanism [may generate a
shared region I in a region of the first virtual memory into
which the driver [is loaded. The driver generating mechanism
I'may store an identifier of the device which is allocated to the
first virtual computer and an address of the shared region I in
address management information correspondingly to the
driver I. The driver generating mechanism I may transmit the
address management information to the first virtualization
mechanism. A driver generating mechanism A included inthe
first virtualization mechanism may acquire an identifier of the
device which is allocated to the first virtual computer corre-
sponding to the loading driver by referring to the address
management information received from the driver generating
mechanism 1. The driver generating mechanism A may con-
vert the identifier of the device which is allocated to the
acquired first virtual computer to an identifier of the device
which is recognizable by the first virtualization mechanism.
The driver generating mechanism A may load, into the physi-
cal memory, a driver A of the device which corresponds to the
identifier of the device which is recognizable by the first
virtualization mechanism. The driver generating mechanism
A may acquire an address of the shared region I which cor-
responds to the identifier of the device, to which the first
virtual computer is allocated by referring to the received
address management information. The driver generating
mechanism A may convert the acquired address of the shared
region I to an address of a shared region A which is recogniz-
able by the first virtualization mechanism. The driver gener-
ating mechanism A may generate a shared region A whose
address has been converted to an address recognizable by the
first virtualization mechanism in a region I of the physical
memory in which the driver A is loaded. A guest driver gen-
erator [432 of the driver generating mechanism I may search
for the address management information by using the identi-
fier stored in the controller information. When an identifier
included in the address management information and the
identifier stored in the controller information are identical to
each other, the guest generator [432 may acquire an address
of the shared region I which corresponds to the identical
identifiers. The guest generator 1 432 may convert the
acquired address of the shared region I to an address of a
shared region II which is recognizable by the second virtual
computer. The guest generator [432 may transmit the address
of the shared region II to the second virtual computer. The
second virtual computer may use, as a driver II of the second
virtual computer, a driver of the device, which corresponds to
an interruption received from the first virtual computer. The
second virtual computer may store, in the driver II, the
address of the shared region II which is received from the
driver generating mechanism I. A driver II of the second
virtual computer may receive an [/O executing request of the
second virtual computer. The driver II of the second virtual
computer may store the received I/O executing request in the
shared region I1. The first virtualization mechanism may refer
to the shared region A, which corresponds to the shared region

US 9,262,184 B2

3

11, by storing the I/O executing request in the shared region I1.
The first virtualization mechanism may execute the 1/O
executing request for the device which is allocated to the first
virtual computer. The first virtualization mechanism may
transmit completion of executing the I/O executing request to
the driver 1. The driver I of the first virtual computer may
transmit the completion of executing the I/O executing
request which is received from the first virtualization mecha-
nism, to the driver II. The driver 1I of the second virtual
computer may receive the completion of executing the /O
executing request from the driver L.

According to an aspect of the present invention, the OS at
the second stage is caused to recognize, in a pass-through
manner, the device driver that runs on the OS at the second
stage. This reduces I/O processing on the OS at the first stage,
which has occurred in the two-staged virtualization mecha-
nism of the related art, whereby deterioration in I/O perfor-
mance is suppressed.

Specifically, a buffer for use in notifying the VMM of an
1/0 request when the OS at the first stage executes the 1/O
request is caused to be usable by the OS at the second stage.
In addition, also a mechanism that sends a notification of
executing an [/O request in use by the first OS is provided to
the OS at the second stage. The OS at the second stage is able
to execute the I/O processing almost without requiring pro-
cessing on the OS at the first stage by using the buffer and the
notifying mechanism.

In other words, an OS on a virtual computer at the (n+m)-th
stage (n and m represent natural numbers) is caused to rec-
ognize a device driver that runs on an OS on the n-th stage
virtual computer. This reduces I/O processing which has been
executed in each of virtual computer layers in a multistage
virtualization mechanism in the related art, whereby deterio-
ration in I/O performance of the OS on the virtual computer at
the (n+m)-th stage is suppressed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a device configuration diagram illustrating an
example of an environment to which the present invention is
applicable;

FIG. 2 is a memory configuration diagram of the device
configuration illustrated in FIG. 1;

FIG. 3 is a configuration diagram of a virtualization mecha-
nism A illustrated in FIG. 1;

FIG. 4 is a configuration diagram of first (1st) OS illus-
trated in FIG. 1;

FIG. 51s aconfiguration diagram of a virtualization mecha-
nism B illustrated in FIG. 1;

FIG. 6 is a configuration diagram of second (2nd) OS
illustrated in FIG. 1;

FIG. 7 illustrates examples of device allocation table A,
control information A, in-execution information A, a data
table A, use information A, completion information A, iden-
tifier conversion information A, and address conversion infor-
mation A that are illustrated in FIG. 3;

FIG. 8 illustrates examples of the 1st OS address table I
illustrated in FIG. 4, a connected device table I, device allo-
cation table 1, and controller information I;

FIG. 9 illustrates examples of an address table 11, queue 11,
adata table I1, use information II, and completion information
1I;

FIG. 10 is a flowchart of a 1st starting process that is
executed by a guest OS generating mechanism;

FIG. 11 is a flowchart of a 1st OS driver generating process
that is executed by a driver generating mechanism;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 12 is a flowchart of a virtualization mechanism A
driver generating process that is executed by the driver gen-
erating mechanism;

FIG. 13 is a flowchart of a 2nd-OS-driver starting process
that is executed by the guest OS generating mechanism;

FIG. 14 is a flowchart of a 2nd-OS-driver generating pro-
cess that is executed by the driver generating mechanism;

FIG. 15 is a flowchart of a 1st-OS-driver generating pro-
cess that is executed by the driver generating mechanism;

FIG. 16 is a flowchart of a 2nd-OS-driver generating pro-
cess that is executed by the driver generating mechanism;

FIG. 17 is a flowchart of an /O process that is executed by
a 2nd OS driver;

FIG. 18 is a flowchart of an /O process that is executed by
a driver of the virtualization mechanism A;

FIG. 19 is a flowchart of an I/O completion process that is
executed by a driver for the virtualization mechanism A
driver;

FIG. 20 is a flowchart of an I/O completion process that is
executed by the 1st OS driver;

FIG. 21 is a flowchart of an I/O completion process that is
executed by the 2nd OS driver; and

FIG. 22 is a table of the address conversion information B
illustrated in FIG. 5.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates an entire configuration of a computer
system.

The computer system includes a physical computer 101
and a device 102 connected to the physical computer 101.

The physical computer 101 includes a CPU ill, a physical
memory 112, and an I/O controller 113. The number of the
CPUs 111 may be plural without being limited to one. The
physical memory 112 includes a virtualization mechanism A
121, a 1st OS 122, a virtualization mechanism B 123, and a
2nd OS 124.

A virtualization mechanism A 121 runs on the physical
computer 101. The virtualization mechanism A 121 generates
a first virtual computer environment in which logical
resources formed by logically dividing physical resources,
such as the CPU 111 of the physical computer 101, are allo-
cated. The 1st OS 122 runs on the generated first virtual
computer.

Further, a virtualization mechanism B 123 runs on the
virtual computer on which the 1st OS 122 runs. The virtual-
ization mechanism B 123 generates a second virtual com-
puter environment in which logical resources formed by logi-
cally dividing resources, such as a CPU, recognized by the
virtualization mechanism B 123, are allocated. The 2nd OS
124 runs on the generated second virtual computer.

Note that although an embodiment of the present invention
describes a two-staged virtual computer environment, the
embodiment may be directed to a virtual computer environ-
ment having more than two stages. In addition, although in
the embodiment, one virtual computer is generated on the
virtualization mechanism A 121 and the 1st OS 122 runs on
the one virtual computer, plural virtual computers may be
generated on the virtualization mechanism A 121, and the 1st
OS 122 may run on each virtual computer. Further, although
one virtual computer is generated on the virtualization
mechanism B 123 and the 2nd OS 124 runs on the virtual
computer, plural virtual computers may be generated on the
virtualization mechanism B 123 and the 2nd OS 124 may run
on the each virtual computer.

US 9,262,184 B2

5

FIG. 2 illustrates allocation of memories to virtualization
mechanisms and OSs.

The physical computer 101 includes the physical memory
112. The virtualization mechanism A 121 recognizes the
physical memory 112, and allocates part of the physical
memory 112 as a virtual memory 201 to a virtual computer.
The 1st OS 122 that runs on the virtual computer recognizes
the virtual memory 201.

The virtualization mechanism B 123 runs on the 1st OS
122. The 1st OS 122 permits an operation performed by the
virtualization mechanism B 123 by using, as a virtual
memory 202, part of the virtual memory 201 which is recog-
nized by the 1st OS 122.

The virtualization mechanism B 123 allocates, as a virtual
memory 203, part of the virtual memory 202, whose opera-
tionis permitted, to the virtual computer. The 2nd OS 124 that
runs on the virtual computer recognizes the virtual memory
202.

The virtual memory 203 recognized by the 2nd OS 124 is
included in the physical memory 112 recognized by the vir-
tualization mechanism A 121. The 2nd OS 124 accesses the
recognized virtual memory 203 by using address a3 recog-
nized ty the 2nd OS 124. Here, an address that is used by the
2nd OS 124 is a value obtained such that each of the virtual-
ization mechanism A 121 and the virtualization mechanism B
123 performs address conversion, and differs from the value
of'address a0 in the physical memory 112 recognized by the
virtualization mechanism A 121. Accordingly, if the 2nd OS
124 uses the address recognized by it when accessing the
physical memory 112, it cannot access the physical memory
112 as intended by it.

In this embodiment, the virtualization mechanism A 121 is
notified of address al ofa shared region reserved in the virtual
memory 201 recognized by the 1st OS 122 and the size of the
shared region. The virtualization mechanism A 121 performs
address conversion to convert address al recognized by the
1st OS 122 to address a0 recognized by the virtualization
mechanism A 121. The 1st OS 122 uses address al, and the
size of the shared region of which the virtualization mecha-
nism A 121 is notified. The virtualization mechanism A 121
uses address a0, and the size of the shared region of which the
virtualization mechanism A 121 is notified by the 1st OS 122.
This enables both virtual mechanisms to access the shared
region.

In addition, the 1st OS 122 also notifies the 2nd OS 124 of
an address of the shared region and the size of the shared
region. At this time, the 1st OS 122 notifies the 2nd OS 124 of
not address al of the shared region recognized by the 1st OS
122 but address a3 of the shared region recognized by the 2nd
OS 124.

As described above, the 1st OS 122, the virtualization
mechanism A 121, and the 2nd OS 124 use addresses al, a0,
and a3, respectively, whereby they all are able to access the
shared region.

A similar manner reserves a notification region capable of
being accessed by the virtualization mechanism A 121, the 1st
OS 122, and the 2nd OS 124. The 1st OS 122, the virtualiza-
tion mechanism A 121, and the 2nd OS 124 use addresses b1,
b0, and b3, respectively, whereby they all can access the
notification region.

The similar manner reserves an event notification region
capable of being accessed by the 1st OS 122 and the 2nd OS
124.The 15t OS 122 and the 2nd OS 124 use addresses c1 and
c2, respectively, whereby both mechanisms can access the
event notification region.

The above-described method can set the shared region
capable of being accessed by the 2nd OS 124, the 1st OS 122,

25

30

40

45

50

60

65

6

and the virtualization mechanism A 121. In addition, use of
the shared region enables data communication between the
2nd OS 124 and the virtualization mechanism A 121 not via
the 1st OS 122 and the virtualization mechanism B 123.

FIG. 3 illustrates the configuration of the virtualization
mechanism A 121.

The physical memory 112 is allocated to the virtualization
mechanism A 121. The physical memory 112 stores a driver
A 301, a device allocation table A 302, an address conversion
mechanism A 303, an identifier conversion mechanism A
304, a guest OS generating mechanism A 305, a driver gen-
erating mechanism A 306, and a driver group A 307.

The driver A 301 includes a shared region A 311, a notifi-
cation region A 312, an I/O completer A 313, an I/O executor
A 314, controller information A 315, and in-execution infor-
mation A 316.

The shared region A 311 includes the data storage region A
321, the data table A 322, use information A 323, and comple-
tion information A 324. The data table A 322, the use infor-
mation A 323, and the completion information A 324 are fixed
in size. At the time the shared region A 311 is reserved, the
regions of the data storage region A 321, the addresses of the
data table A 322, the use information A 323, and the comple-
tion information A 324 are determined.

The address conversion mechanism A 303 contains address
conversion information A 361.

The identifier conversion mechanism A 304 contains iden-
tifier conversion information A 351.

The guest OS generating mechanism A 305 includes a
guest operating system starter A 331.

The driver generating mechanism A 306 includes a self
driver generator A 341.

FIG. 4 illustrates the configuration of the 1st OS 122.

The 1st OS 122 includes the virtual memory 201. The
virtual memory 201 stores the virtualization mechanism B
123, a driver 1 401, a 1st OS address table 1 402, connected
device table 1 403, device allocation table I 404, a guest
operating system (OS) generating mechanism [405, a driver
generating mechanism 1406, and an event notification region
1407.

The driver I 401 includes a shared region [411, a notifica-
tionregion 412, controller information I 413, an interruption
receiver [414, an interruption issuer [415, a driver generator
1416, a notification region size 1 417, and a shared region size
1418.

The shared region I 411 is a region that starts at address al
of'the virtual memory 201 illustrated in FIG. 2. This region is
identical to the shared region A 311, which starts at address a0
of the physical memory 112 illustrated in FIG. 2.

The notification region 1 412 is a region that starts at
address bl of the virtual memory 201 in the virtual memory
201 illustrated in FIG. 2. This region is identical to the noti-
fication region A 312, which starts at address b0 of the physi-
cal memory 112 illustrated in FIG. 2. The notification region
size [417 and the shared region size [418 store the size of the
Notification region 1 412 and the size of the shared region size
1411, respectively. Although this embodiment assumes that
values are stored beforehand in the notification region size I
417 and the shared region size 418, the values are changeable
by a user.

The guest OS generating mechanism 1 405 includes a guest
driver allocator I 421 and a guest OS starter [422.

The driver generating mechanism [406 includes self driver
generator [431, a guest driver generator [432, and a notifier
1433.

FIG. 5 illustrates the configuration of the virtualization
mechanism B 123.

US 9,262,184 B2

7

The virtualization mechanism B 123 includes the virtual
memory 202. The virtual memory 202 stores an address con-
version mechanism B 501. The address conversion mecha-
nism B 501 contains address conversion information B 511.

FIG. 6 illustrates the configuration of the 2nd OS 124.

The 2nd OS 124 includes the virtual memory 203. The
virtual memory 203 stores a driver I1 601, a driver generating
mechanism II 602, an application II 603, and an event notifi-
cation region 11 604.

The event notification region II 604 is a region that starts at
address c2 of the virtual memory 203 in the 2nd OS 124 in
FIG. 2. This region is the event notification region 1 407,
which starts at address c1 of the virtual memory 201 in the 1st
OS 122 illustrated in FIG. 2.

The driver II 601 includes a shared region II 611, a notifi-
cation region II 612, an address table I1 613, a queue 11 614, a
temporary storage region II 615, an interruption receiver 11
616, and an I/O executor 11 617.

The shared region 11 611 is a region that starts at address a2
of the virtual memory 203 in the 2nd OS 124 illustrated in
FIG. 2. This region is identical to the shared region I 411,
which starts at address al of the virtual memory 201 of 1st OS
122 in FIG. 2, and the shared region A 311, which starts at
address a0 of the physical memory 112 illustrated in FIG. 2.

The notification region II 612 is a region that starts at
address b2 in the virtual memory 203 of the 2nd OS 124 in
FIG. 2. This region is identical to the notification region 1 412
that starts at address b1 in the virtual memory 201 of the 1st
0S8 122 in FIG. 2, and the notification region A 312 that starts
at address b0 in the physical memory 112 in FIG. 2.

The shared region 1I 611 includes a data storage region 11
621, a data table II 622, use information II 623, and comple-
tion information II 624. The data table II 622, the use infor-
mation I 623, and the completion information I1 624 are fixed
in size. At the time the shared region II 611 is reserved, the
addresses of the data storage region 1I 621, the data table II
622, the use information II 623, and the completion informa-
tion 11 624 are determined. The driver generating mechanism
11 602 includes a driver generator II 631.

FIG. 7 illustrates the device allocation table A 302, the
controller information A 315, the in-execution information A
316, the data table A 322, the use information A 323, the
completion information A 324, the identifier conversion
information A 351, and the address conversion information A
361.

The device allocation table A 302 stores a name 711 that
identifies a virtual computer to which a device is to be allo-
cated, an identifier 712 that identifies the device to be allo-
cated to the virtual computer identified by the name 711. For
instance, a row 710 shows that a device identified by the
identifier “00:16.0” is allocated to the virtual computer iden-
tified by the name “1st OS I”. These pieces of information are
specified and stored by, for example, the user.

The controller information A 315 stores an identifier 721
that identifies a device to which the driver A 311, which
contains the controller information A 315, corresponds. For
instance, a row 720 shows that the driver A 301, which con-
tains the controller information A 315, corresponds to a
device identified by the identifier “00:16.0”.

The in-execution information A 316 stores an index 731
which identifies an 1/O request being issued and which is
stored in the data table A 322, and an address 732 of the device
102, which is identified and which is issuing the 1/O request.
For instance, a row 730 shows that in a row identified by the
index “3” of the data table A 322, an I/O request identified
from stored information is being issued at the address “128”
of the device 102.

10

15

20

25

30

35

40

45

50

55

60

8

The data table A 322 stores the in-execution information A
316, the use information A 323, an index 741 that is used for
identifying a row in the data table A 322 by the completion
information A 324 or the like, an address 742 storing an /O
request, and a size 743 of the /O request. For instance, a row
740 is identified by index ““1” in the data table A 322. This row
shows that the 1/O request is stored in a region that starts at
address 1024 of the data storing region A 321 having size “4”.

The use information A 323 stores an index 751 which is
stored in the use information A 323 and which identifies an
1/O request that has not been issued. For instance, row 750
shows that I/O information stored in the row identified by the
index “1” of the data table A 322 has not been issued yet for
the device 102.

The completion information A 324 stores an index 761
which is stored in the data table A 322 and which identifies an
1/0O request awaiting receipt of the 2nd OS 124. For instance,
a row 760 shows that I/O information identified by informa-
tion stored in the index “2” of the data table A 322 has not
been received yet by the 2nd OS 124.

The address conversion information A 361 includes a vir-
tualization mechanism address 781 that is recognized by the
virtualization mechanism A 121, a 1st OS name 782 that
identifies a virtual computer to which a memory identified by
the virtualization mechanism address 781 is allocated, and a
1st operating system (OS) address 783 that is a converted
address ofthe virtualization mechanism address 781, which is
identified by the virtual computer identified by the 1st OS
name 782. For instance, a row 780 shows that a memory
indicated by an address recognized as “aabc” by the virtual-
ization mechanism A 121 is recognized as a memory that can
be accessed by the address “0000”.

By using the address conversion information A 361, the
address “a0” of the shared region A recognized by the virtu-
alization mechanism A 121 and the address “al” of the shared
region I recognized by 1st OS can be converted. In addition,
the address “b0” of the notification region A identified by the
virtualization mechanism A 121 and the address “b1” of the
notification region I recognized by 1st OS can be converted.

In this embodiment, by using the 1st OS name 782, the
address conversion information A has address conversion
information of plural virtual computers in a table. By retain-
ing plural pieces of address conversion information A, each
virtual computer may retain address conversion information
without using the 1st OS name 782.

FIG. 8 illustrates a 1st OS address table 1 402, connected
device table 1403, device allocation table I 404, and controller
information 1 413.

The 1st OS address table I 402 stores an identifier 811 that
identifies a device, a notification region address 812 that is
used by a driver corresponding to a device identified by the
identifier 811, a notification region size 813, a shared region
address 814, and a shared region size 815. For instance, a row
810 shows that the notification region I 412 which is held by
the driver I 401 and which corresponds to the device 102
identified by the identifier “02:00.1” is reserved from the
address “128” having the size “64”, and that the shared region
1 411 is reserved from the address “512” having the size
“1024”. Note that at the time the 1st OS starts and a device is
recognized to be connected to the 1st OS, one row is appro-
priately added in the 1st OS address table I 402.

The connected device table I 403 stores an identifier 821 of
a device connected to the 1st OS 122, and a name 822 of the
device identified by the identifier 821. For instance, arow 820
shows that the device 102, which is identified by the identifier
“02:00.1” and whose name is identified by “Ethernet Con-
troller”, is connected to the 1st OS 122.

US 9,262,184 B2

9

The device allocation table I 404 stores a name 831 of the
virtual computer on which the 2nd OS 124 runs, and an
identifier 832 that identifies a device to be allocated to a
virtual computer identified by the name 831. For instance, a
row 830 shows that a device identified by the identifier “02:
00.1” is to be allocated to a virtual computer on which a 2nd
OS identified by the name “Guest I’ runs.

The controller information I 413 stores an identifier 841
that identifies a device to which the driver 1 401, which retains
the controller information I 413, corresponds. For instance, a
row 840 shows that the driver I 401, which retains the con-
troller information I 413, corresponds to a device identified
by the identifier “02:00.1”.

FIG. 22 illustrates the address conversion information B
511. The address conversion information B 511 contains a 1st
OS address 2201 that is recognized by the 1st OS 122, a guest
name 2202 that identifies the 2nd OS 124, which allocates a
memory identified by the 1st OS address 2201, and a guest
address 2203 that is a converted address of the 1st OS address
2201 recognized by the 2nd OS 124, which is identified by the
guest name 2202. For instance, a row 2220 shows that a
memory indicated by an address recognized as “8765” by the
1st OS 122 is recognized as a memory capable of being
accessed at the address “0000” by the 2nd OS 124, which is
identified by the name “Guest I”.

By using the address conversion information B 511,
address al of the shared region I, which is recognized by the
1st OS 122, and address a2 of the shared region II, which is
recognized by the 2nd OS 124, can be converted. In addition,
address b1 of the notification region I, which is recognized by
the 1st OS 122, and address b2 of the notification region II,
which is recognized by the 2nd OS 124, can be converted.

In this embodiment, by using the 1st OS name 782, the
address conversion information B 511 has address conversion
information of plural virtual computers in a table. By using
plural pieces of the address conversion information B 511,
each virtual computer may retain address conversion infor-
mation without using the guest name 2202.

FIG. 9 illustrates the address table II 613, the queue 11 614,
the data table II 622, the use information II 623, and the
completion information 1T 624.

The address table II 613 stores an identifier 911 that iden-
tifies a device to which the driver II 601, which includes the
address table II 613, corresponds, and a notification region
address 912, a notification region size 913, a shared region
address 914, and a shared region size 915 that identify the
notification region II 604 and the shared region II 611, which
are used by the driver II 601, which includes the address table
11 613. For instance, a row 910 shows that the notification
region II 604, which is held by the driver II 601, which
corresponds to a device identified by the identifier “02:00.17,
is reserved at address 8 having the size “64”, and that the
shared region I1 611 is reserved at address 256 having the size
“1024”.

The queue 1I 614 stores an address 921 and size 922 of a
region storing an unexecuted I/O request. For instance, a row
920 shows that an I/O request stored at address 16 having the
size “16” of the virtual memory 203 in the 2nd OS 124 has not
been executed yet.

The data table II 622, the use information II 623, and the
completion information II 624 have information identical to
the data table A 322, the use information A 323, and the
completion information A 324.

FIG. 10 is a process flowchart of the guest OS starter A 331
included in the guest OS generating mechanism A 305 of the
virtualization mechanism A 121.

10

15

20

25

30

40

45

55

60

65

10

In step 1001, the guest OS starter A 331 refers to the device
allocation table A 302 when the 1st OS 122 starts.

In step 1002, the guest OS starter A 331 acquires, in the
device allocation table A 302, the identifier 712 of a device
which is stored in the row 710 including the name 711, which
matches the name of the 1st OS 122, which started in step
1001.

In step 1003, the guest OS starter A 331 allocates a device
identified by the identifier 712 of the device acquired in step
1002 to the 1st OS I, which has been started in step 1001, for
example, the 1st OS 122, and continues to be started.

FIG. 11 is a process flowchart of the driver generating
mechanism I 406 of the 1st OS 122.

In step 1101, the self driver generator I 431 included in the
driver generating mechanism 1 406 acquires information, on
the identifier 721 of the device, acquired in step 1002, and
stores, in the connected device table 1 403, the identifier 712
and a name that is information on the device identified by the
identifier 712 recognized by the 1st OS 122, respectively as
the identifier 821 and the name 822.

In step 1102, the self driver generator I 431 scans the
connected device table 1 403, in which the identifier 712 has
been stored in step 1101, in order to generate a notification
region and shared region of a device identified by the identi-
fier 712.

In step 1103, if the connected device table I 403 includes an
unscanned row, the self driver generator 1 431 loads the self
driver generator 1 431, to which a device identified by the
identifier 821 in unscanned row 820 corresponds.

In step 1104, the self driver generator I 431 stores, in the
driver 1 401 in the 1st OS 122, the controller information 1
413, which stores the identifier 821 of the device to be allo-
cated.

Instep 1105, the self driver generator 1 431 generates, in the
driver 1 401 in the 1st OS 122, the notification region I 412,
which has a size stored in the notification region size 1 417,
and acquires address b1 of the generated a notification region
1412

Instep 1106, the self driver generator 1 431 generates, in the
driver 1 401, the shared region 1 411 by securing the size
stored in the shared region size 1 418 from a free region. The
self driver generator 1 431 also uses the start point of the
generated a shared region I 411, as address al, and acquires
the address al.

In step 1107, the self driver generator 1 431 stores, in the 1st
OS address table 1 402, the identifier 821 of the device to be
allocated, the address b1 acquired in step 1105 of the notifi-
cation region I 412, the size of the notification region 1 412
generated in step 1105, the address al acquired in step 1106
of the shared region 1 411, and the size of the shared region |
411 generated in step 1106.

In step 1108, when scanning of all the rows is complete in
step 1102, the notifier I 433 included in the driver generating
mechanism I 406 of the 1st OS 122 notifies the virtualization
mechanism A 121 of information on the 1st OS address table
1402.

FIG. 12 is a process flowchart of the driver generating
mechanism A 306 of the virtualization mechanism A 121.

In step 1201, the self driver generator A 341 included in the
driver generating mechanism A 306 of the virtualization
mechanism A 121 receives and stores the information on the
1st OS address table 1 402 notified in step 1108 in the physical
memory 112.

In step 1202, the self driver generator A 341 scans the 1st
OS address table I 402 received and stored in the physical
memory 112 in step 1201 in order to load a driver correspond-
ing to the device stored in the 1st OS address table I 402.

US 9,262,184 B2

11

In step 1203, when the unscanned row 810 is included in
the 1st OS address table 1 402, the self driver generator A 341
acquires the identifier 811 of the device whose driver is to be
loaded from the unscanned row 810. The identifier conver-
sion mechanism A 304 converts an identifier 772 recognized
by the 1st OS 122 to an identifier 771 recognizable by the
virtualization mechanism A 121 by using the identifier con-
version information A 351 for the acquired identifier 811.

In step 1204, the self driver generator A 341 loads, into the
physical memory 112, the driver A 301, which corresponds to
the device identified by the identifier 771 obtained by the
conversion in step 1203.

In step 1205, the self driver generator A 341 stores, in the
controller information A 315 of'the driver A 301, the identifier
771 obtained by the conversion in step 1203 so as to have a
value recognizable by the virtualization mechanism A 121.

In step 1206, the self driver generator A 341 acquires the
notification region address 812 and the shared region address
814 from a row ofthe 1st OS address table 1402, in which the
identifier 811 has been acquired in step 1203. The address
conversion mechanism A 303 converts the notification region
address 812 and the shared region address 814 so as to have a
value recognizable by the virtualization mechanism A 121
from a value recognizable by the 1st OS 122 by using the
address conversion information A 361.

In step 1207, the self driver generator A 341 stores, in the
driver A 301, as the notification region A 312, a region des-
ignated by both the notification region size 813 acquired from
the row of the 1st OS address table 1 402, in which the
identifier 811 has been acquired in step 1203, and the notifi-
cation region address obtained in step 1206 by the conversion
so as to have a value recognizable by the virtualization
mechanism A 121 from a value recognizable by the 1st OS
122.

In step 1208, the self driver generator A 341 stores, in the
driver A 301, as the shared region A 311, a region designated
by both the shared region size 815, which is acquired from the
row of the 1st OS address table 1 402, in which the identifier
811 has been acquired in step 1203, and the shared region
address obtained in step 1206 by the conversion so as to have
a value recognizable by the virtualization mechanism A 121
from a value recognizable by the 1st OS 122.

After step 1208 has finished, the process returns to step
1202. When scanning of all the rows is complete in step 1202,
the process is completed.

FIG. 13 isaprocess flowchart of the guest operating system
(OS) generating mechanism [405 of the 1st OS 122.

By starting the 2nd OS 124, to which the device identified
by the identifier 821 in the row 820 stored in the connected
device table 1 403 is to be allocated, the guest driver allocator
1421 included in the guest operating system (OS) generating
mechanism [405 of the 1st OS 122 stores a name identifying
the 2nd OS 124 in the device allocation table I 404.

In step 1301, the identifier 821 acquired from the con-
nected device table I 403 is stored, as the identifier 832 of the
device which is to be allocated to the 2nd OS 124, in the
device allocation table I 404. Note that which of the rows of
the connected device table 1 403 is designated by, for
example, the user.

Instep 1302, the guest OS starter [422 included in the guest
operating system (OS) generating mechanism 1 405 continues
starting the 2nd OS 124 identified by the name 831 by using,
as an argument, the identifier 821, stored in the device allo-
cationtablein step 1301, of the device which is to be allocated
to the 2nd OS 124.

FIG. 14 is a process flowchart of the driver generating
mechanism II 602 of the 2nd OS 124.

10

15

20

25

30

35

40

45

50

55

60

65

12

In step 1401, starting the 2nd OS 124 causes the driver
generator I1 631 included in the driver generating mechanism
11 602 of the 2nd OS 124 to access the notification region 11
604 in order to load the driver corresponding to the device
allocated to the 2nd OS 124 in step 1302.

In step 1402, the driver generator II 631 awaits being
interrupted by the 1st OS 122.

FIG. 15 is a process flowchart of the driver generating
mechanism I 406 of the 1st OS 122.

In step 1501, the guest driver generator [432 of the driver
generating mechanism 1406 in the 1st OS 122 receives access
of'the event notification region I1 604 from the driver genera-
tor I1 631 on the 2nd OS, which has occurred in step 1401. The
event notification region 1 407 is a region that starts at address
cl in the virtual memory 201 of the 1st OS 122 in FIG. 2. This
region is identical to the event notification region II 604 that
starts at address c2 in the virtual memory 203 of the 2nd OS.

In step 1502, the guest driver generator [432 scans the 1st
OS address table I 402 by using the identifier 841 stored in the
controller information I 413 in order to acquire the addresses
of the notification region I 412 and the shared region I 411.

In step 1503, when an unscanned row is included in the 1st
OS address table I 402, the guest driver generator 1 432
determines whether or not the identifier 841 stored in the
controller information I 413 and the identifier 811 of the
unscanned row 810 of the 1st OS address table 1 402 are
identical to each other.

When it is determined in step 1503 that both identifiers are
not identical, the process returns to step 1502.

When it is determined in step 1503 that both identifiers are
identical, the guest driver generator I 432 acquires the notifi-
cation region address 812 and the shared region address 814
from the row 810 selected as determined in step 1503 to have
the identifier 811, which is identical to the identifier 841. In
addition, in step 1504, the guest driver generator 1 432 con-
verts a value, recognized by the 1st OS 122 to a value 2203
recognizable by the 2nd OS 124 by using the address conver-
sion mechanism B 501 included in the virtualization mecha-
nism B 123 to refer to the address conversion information B
511.

Here, the reason that the guest driver generator 1432 is able
to use an address conversion mechanism in the virtualization
mechanism B 123 and to refer to a table is described. As
illustrated in FIG. 2, the memory ofthe virtualization mecha-
nism B 123 is included in the memory of the 1st OS 122. Data
in the virtualization mechanism B 123 is configured to be
accessible by the 1st OS 122. Accordingly, each of various
parts of the 1st OS 122, for example, the guest driver genera-
tor I 432 can access data in the virtualization mechanism B
123.

The notifier 1 433 of the driver generating mechanism I 406
changes the notification region address 812 and the shared
region address 814 in the 1st OS address table 1 402 to the
values converted in step 1504, and notifies the event notifica-
tion region 1 407 and the 2nd OS 124 of both addresses
together with the notification region size 1 417 and the shared
region size [418 by using the event notification region I 407.
And the process returns to step 1502.

When scanning of all the rows is complete in step 1502, the
process ends.

FIG. 16 is a process flowchart of the driver generator
mechanism II 602 of the 2nd OS 124.

In step 1601, the driver generator 11 631 included in the
driver generating mechanism II 602 of the 2nd OS 124
receives the notification region address, notification region
size, shared region address, and shared region size, notified
by using the event notification region 1 407 in step 1505, of the

US 9,262,184 B2

13

driver II 601, which corresponds to the device loaded by the
guest driver generator 1 432, which has accessed the event
notification region I1 604 in step 1401, and loads the driver 11
601.

In step 1602, the driver generator II 631 stores the notifi-
cation region address, notification region size, shared region
address, and shared region size received in step 1601 in the
address table II 613 in the driver II 601 of the 2nd OS 124.

The event notification region I 407 is a region that starts at
address c1 in the virtual memory 201 ofthe 1stOS 122 in FIG.
2. This region is identical to the event notification region II
604 that starts at address c2 in the virtual memory 203 of the
2nd OS 124 in FIG. 2.

FIG.17 is a flowchart of the /O process by the driver I1 601
of the 2nd OS 124.

In step 1701, the 1/O executor II 617 of the driver II 601
receives the I/O request executed by the application II 603 on
the 2nd OS 124.

In step 1702, the 1/O executor 11 617 acquires the shared
region address 914 by referring to the address table II 613, in
which the plural pieces of information have been stored in
step 1601.

In step 1703, the I/O executor 11 617 determines whether or
not processing for all the I/O requests received in step 1701 is
complete. If an unscanned I/O request remains, the process
proceeds to step 1704. If no unscanned I/O request remains,
that is, if the processing for all the I/O requests is complete,
the process proceeds to step 1708.

In step 1704, the 1/O executor 11 617 confirms whether or
not the data storage region 621 of the driver II 601 includes a
free region.

In step 1705, if it is confirmed in step 1704 that the data
storage region 621 of the driver II 601 includes a free region,
the I/O executor II 617 stores, in the free region confirmed in
step 1704 of the data storage region 621, the 1/O request
determined to be unscanned in step 1703.

In step 1706, the /O executor I1 617 stores, in the data table
11 622 in the driver II 601, the index unused in the data table
11 622 which has been acquired by determining the indexes of
all the rows in the data table II 622, an address in the data
storage region 621, in which the I/O request has been stored
in step 1705, and a data size of the I/O request stored in the
data storage region 621.

In step 1707, the I/O executor II 617 stores, in the use
information 11623 of the driver II 601, the index stored in step
1706 of the data table I1 622. After completion of step 1707,
the process returns to step 1703.

In step 1708, if the processing for all the /O requests
received by the driver I 601 is complete in step 1703, the I/O
executor 11 617 acquires the notification region address 912
by referring to the address table II 613 in the driver II 601.

After step 1708, in step 1709, the I/O executor 11 617
changes the value stored in the notification region 11 612 from
0to 1 in order to notify the 1st OS 122 that the I/O executor I1
617 will issue an 1/O request. Step 1709 causes the driver 11
601 to be regarded as having issued the I/O request to the
device identified by the 2nd OS 124.

In step 1710, the I/O executor I 617 awaits an interruption
that notifies it of completion of the I/O request issued in step
1709 for the device identified by the 2nd OS 124.

In step 1711, if it is confirmed in step 1704 that the data
storage region 621 includes no free region, the /O executor 11
617 stores the acquired I/O request in the temporary storage
region II 615, and stores an address representing a storage
location of, the temporary storage region II 615 and the size of
the stored 1/O request in the queue 11 614. Then, the process
ends.

10

15

20

25

30

35

40

45

50

55

60

14

Note that when the I/O is asynchronously implemented, at
the time the driver 11 601 has received the 1/O request in step
1701, the application II 603 may be notified of /O comple-
tion. In this case, the driver I1 601 continues step 1702 and the
subsequent steps without being in synchronization with the
application II 603.

FIG. 18 is a process flowchart of the /O executor A 314 of
the virtualization mechanism A 121.

In step 1801, the /O executor A 314 receives the storing,
executed in step 1709, to the notification region A 312. The
value stored in the notification region A 312 is returned to 0.
The notification region II 612 is a region that starts at address
b2 in the virtual memory 203 of the 2nd OS 124 in FIG. 2.
This region is identical to the notification region A 312 that
starts at address b0 in the physical memory 112 in FIG. 2.

In step 1802, the /O executor A 314, which has received
the storing to the notification region A 312, scans the use
information A 323 in the driver A 301 in order to confirm
whether or not an I/O request to be executed for the device
102 has been issued.

In step 1803, if an unscanned index 751 is included in the
use information A 323, the /O executor A 314 acquires the
unscanned index.

In step 1804, the 1/O executor A 314 identifies a row in
which the index of the data table A 322 identical to the
unscanned index 751 acquired in step 1803, acquires the
address 742 and size 743 of the data storage region A 321,
stored in the identified row, and acquires the I/O request
stored in the data storage region A 321 by using the acquired
address 742 and size 743. The data storage region II 621 and
the data storage region A 321 represent the same region.

In step 1805, the /O executor A 314 executes the I/O
acquired in step 1804 on the device 102 identified by the
controller information A 315 updated in step 1205.

In step 1806, the /O executor A 314 stores, in the in-
execution information A 316, the index 741 stored in the row
of the data table A 322 in which the information on the I/O
executed in step 1805 is stored, and a destination address of
the 1/0O executed in step 1805.

In step 1807, the I/O executor A 314 awaits a response from
the device for the /O request executed in step 1806. The
process returns to step 1802.

When the use information A 323 includes no unscanned
index 751, scanning of the use information A 323 is regarded
as complete, and the process ends.

FIG. 19 is a process flowchart of the /O completer A 313
of the virtualization mechanism A 121.

In step 1901, the I/O completer A 313 receives the result of
the 1/O executed in step 1805 from the device 102.

In step 1902, the /O completer A 313 identifies, in the
in-execution information A 316, the row 730 in which the
address 732 is identical to the destination address of the I/O
received in step 1901, and acquires the index 731 from the
row 730. In addition, the [/O completer A 313 acquires, in the
data table A 322, arow 740 in which the index 741 is identical
to the acquired index 731.

In step 1903, the [/O completer A 313 deletes the row 730,
identified in step 1902, of the in-execution information A 316.

In step 1904, the I/O completer A 313 stores the result of
the I/O received from the device in step 1901 in the data
storage region A 321 identified by the address 742 and size
743 stored in the row 740 acquired in step 1902 of the data
table A 322.

In step 1905, the I/O completer A 313 deletes, from the use
information A 323, the row 750 in which the index, acquired
in step 1901, having a value identical to that of the index 731,
is stored.

US 9,262,184 B2

15

In step 1906, the I/O completer A 313 stores, as the index
761, the index 731 acquired in step 1901 in the completion
information A 324.

In step 1907, the I/O completer A 313 acquires the identi-
fier 721 from the controller information A 315, and identifies
the row 710, in which the identifier 721 and the identifier 712
ofthe device allocation table A 302 are identical to each other.
The I/O completer A 313 also identifies the 1st OS 122 on the
basis of the name 711 stored in the row 710, and issues an I/O
completion interruption.

FIG. 20 is a process flowchart of the driver [401 of the 1st
0S 122.

In step 2001, the interruption receiver 1 414 of the driver |
410 in the 1st OS 122 receives the I/O completion interruption
issued in step 1907.

In step 2002, the interruption receiver 1 414 acquires the
identifier 841 from the controller information I 413, identifies
the 2nd OS 124, to which the device identified by the identi-
fier 841 is allocated, by referring to the device allocation table
1404, and issues the [/O completion interruption to the iden-
tified 2nd OS 124.

FIG. 21 is a flowchart illustrating an I/O receiving process
of the 2nd OS 124 by the interruption receiver 11 616 of the
2nd OS 124.

In step 2101, the interruption receiver 11 616 receives the
1/O completion interruption issued in step 2002.

In step 2102, the interruption receiver II 616 scans the
completion information II 624 updated in step 1906. The
completion information A 324 and the completion informa-
tion II 624 represent the same information.

In step 2103, when an unscanned index 951 is included in
the completion information 11 624, the interruption receiver 11
616 acquires the unscanned index 951.

In step 2104, the interruption receiver 11 616 acquires the
address 932 and size 933 of the data storage region II 621
from a row 930 of the data table II 622, which has an index
931 identical to the index 951 acquired in step 2103.

In step 2105, the interruption receiver 11 616 acquires the
completed I/O request from the data storage region 621 iden-
tified by the address and size acquired in step 2014.

After step 2105 finishes, the process returns to step 2102.

In step 2106, after scanning of the completion information
11 624 in step 2102 finishes, the interruption receiver 11 616
notifies the application I1 603 of completion of the I/O.

In step 2107, after step 2106 finishes, the interruption
receiver 11 616 confirms the queue 11 614.

In step 2108, when the I/O request is stored in the queue I1
614, the interruption receiver II 616 acquires the stored 1/0
request, deletes the /O request acquired from the queue II
614, and executes step 1703 and the subsequent steps by using
the acquired I/O request as an argument and calling the I/O
executor 11 617.

When the /O request is not stored in the /O executor 11
617, the 1/O receiving process of the 2nd OS 124 is com-
pleted.

What is claimed is:

1. A virtual computer system comprising:

aphysical computer including a central processing unit and
a physical memory;

afirst virtualization mechanism that operates on the physi-
cal computer to provide a first virtual computer;

asecond virtualization mechanism that operates on the first
virtual computer to provide a second virtual computer;
and

a device connected to the physical computer,

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein a driver generating mechanism [included in the
first virtual computer loads a driver 1 allocated to the first
virtual computer into a first virtual memory allocated to
the first virtual computer,

the driver generating mechanism 1 stores, as controller
information, an identifier of the device which is allo-
cated to the first virtual computer,

the driver generating mechanism I generates a shared
region | in a region of'the first virtual memory into which
the driver I is loaded,

the driver generating mechanism I stores an identifier of the
device which is allocated to the first virtual computer
and an address of the shared region I in address manage-
ment information correspondingly to the driver 1,

the driver generating mechanism I transmits the address
management information to the first virtualization
mechanism,

a driver generating mechanism A included in the first vir-
tualization mechanism acquires an identifier of the
device which is allocated to the first virtual computer by
referring to the address management information
received from the driver generating mechanism I,

the driver generating mechanism A converts the identifier
of the device which is allocated to the first virtual com-
puter to an identifier of the device which is recognizable
by the first virtualization mechanism,

the driver generating mechanism A loads, into the physical
memory, a driver A of the device which corresponds to
the identifier of the device which is recognizable by the
first virtualization mechanism,

the driver generating mechanism A acquires an address of
the shared region I which corresponds to the identifier of
the device, to which the first virtual computer is allo-
cated,

the driver generating mechanism A converts the acquired
address of the shared region I to an address of a shared
region A which is recognizable by the first virtualization
mechanism,

the driver generating mechanism A generates a shared
region A whose address has been converted to an address
recognizable by the first virtualization mechanism, in a
region of the physical memory in which the driver A is
loaded,

the driver generating mechanism I searches for the address
management information by using the identifier stored
in the controller information,

when an identifier included in the address management
information and the identifier stored in the controller
information are identical to each other, the driver gener-
ating mechanism [acquires an address of the shared
region I which corresponds to the identical identifiers,

the driver generating mechanism I converts the acquired
address of the shared region I to an address of a shared
region II which is recognizable by the second virtual
computer,

the driver generating mechanism I transmits the converted
address of the shared region II to the second virtual
computer,

the second virtual computer uses, as a driver II of the
second virtual computer, a driver of the device, which
corresponds to an interruption received from the first
virtual computer,

the second virtual computer stores, in the driver II, the
address of the shared region Il which is received from the
driver generating mechanism 1,

a driver II of the second virtual computer receives an 1/O
executing request of the second virtual computer,

US 9,262,184 B2
17

the driver II of the second virtual computer stores the
received I/O executing request in the shared region II,

the first virtualization mechanism refers to the shared
region A, which corresponds to the shared region I1, by
storing the 1/O executing request in the shared region II, 5

the first virtualization mechanism executes the I/O execut-
ing request for the device which is allocated to the first
virtual computer,
the first virtualization mechanism transmits completion of
executing the I/O executing request to the driver I, 10

the driver I of the first virtual computer transmits the
completion of executing the [/O executing request
received from the first virtual computer to the driver II,
and

the driver II of the second virtual computer receives the 15

completion of executing the I/O executing request from
the driver I.

2. The virtual computer system according to claim 1,
wherein the second virtual computer recognizes the driver [of
the device which is allocated to the first virtual computer. 20

3. The virtual computer system according to claim 2,
wherein the shared region I, the shared region II, and the
shared region A each are operable by the first virtualization
mechanism and the second virtualization mechanism.

4. The virtual computer system according to claim 3, 25
wherein the first virtual computer and the second virtual
computer each have a multistage configuration.

#* #* #* #* #*

